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ABSTRACT to specialize the general idea underlying this family of deriva-

tive estimators to the various classes of stochastic processes

This paper discusses likelihood ratio derivative estima- described above.

tion techniques for stochastic systems. After a brief review

of the basic concepts, likelihood ratio derivative estimators 2. LIKELIHOOD RATIO DERIVATIVE
are presented for the following classes of stochastic processes:

time homogeneous discrete-time Markov chains, non-time ho- ESTIMATION

mogeneous discrete- time Markov chains, time komogeneous In this section, we provide a brief introduction to the
continuouts-time Markov chains, semi-Markov processes, non-timehomogeneouscontinuous-time Mi, arkov pchns, ngn- basic ideas that underlie likelihood ratio derivative estima-time homogeneous continuous-time Markov chains, and gen-
eralized serni-Markv processes. ,1" tion. To set the stage, consider a family of stochastic sys-

e tems that is indexed by a scalar decision parameter 0. For

example in a queueing context, 0 might correspond to the

1. INTRODUCTION service rate at a particular station. Given the sample space

0, let X(0, w) be the sample performance measure observed

In recent years, an extensive literature has begun to at sample outcome w and decision parameter 0; we pernit

develop within the simulation community on efficient esti- X(0, w) to depend explicitly on e in order to enccrmpass sit-

mation of derivatives of performance measures with respect uations in which the "cost" of rumning the stochastic system

to decision parameters. In this paper, we shall focus on de- (as measured through X(9)) depends on the parameter 0.

scribing the basic ideas that underlie a recently introduced (However, in many estimation settings, X(9) is independent

derivative estimation method known as likelihood ratio of 0 and therefore depends only on W.) In addition, the prob-

derivative estimation (also known as the efficient score ability distribution Pe on 11 typically depends on 0; Pe then

method). This technique has been previously described in reflects the manner in which the random environment is af-

GLYNN (1986,1987), REIMAN and WEISS (1986), and RU- fected by the decision parameter. The performance measure

BINSTEIN (1986). a(O) associated with parameter value 0 is then defined as
the expectation

In Section 2, we describe the basic likelihood ratio
derivative estimator in a general setting in which the essential X

idea is most transparent. Section 3 specializes the estimator In) = X(,w)P(dw).
to discrete-time stochastic processes. We derive likelihood

ratio derivative estimators for both time homogeneous and Our goa[ is to describe an estimation methodology for calcu-

non-time homogeneous discrete-time Markov chain. In Sec- lating a'(0o).
tion 4, we conduds the paper with a discuassion of lihalihood

ratio derivative estimation in contimous time. We present, The likelihood ratio method for derivative estimation

as examples of our analysis, the derivative estimators for: is based on the following idea. Suppoe that there exists a

time homogeneous contimous-time Marbov chais, non-time measure I (not necessarily a probability measure) such that

homogeneous continuous-time Markov chain, semi-Markov Ps(dw) = f(0,w)U(dw) i.e. f(0, ') is the density of Pe
processes, and generalized sesi-Markov proceasses. In all our with respect to p. Then,

examples, we require that the performance measure corre-

spond to a terminating simulation. =)[=

As mentioned earlier, the likelihood ratio derivative as- X( C

tirnation technique has been previously investigated in a Assuming that the derivative and integral can be inter-

number of different papers. Our main contribution here is c we obtain
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see GLYNN and IGLEHART (1989) for further details. Un-
fortunately, the optimal sampling density g' basically re-

a'(0o) = [X'(o,W)f( 0 ,,)&d) quires knowledge of the integal (appearing in the second
n(2.1) term in (2.1)) that we are trying to estimate. Therefore, the

+ /jX(00,,)f(0,w)(& ). choice of g° as defined by (2.5) is typically impractical to+fn 
implement.

We note that the first term on the right-hand side of (2.1) is We now describe a popular alternative to g*. Suppose

just EoX'(0o) (where E;(') denotes the expectation oper- that the densities f(0, w) are such that for 0 in an open

ator associated with P#). Since this term can be represented neighborhood of 00,

as the expectation of a r.v., standard Monte Carlo methods
may be applied to estimate it. Specifically, suppose that one A(O) " f(O,w) > 0) is
simulates i.i.d. replicates of X'(00) under distribution Pe.; independent of 0. (2.6)

the sample mean of these observations then converges (at rate
n- 1/ 2 in the number n) of observations) to the first term.

Then, f(O0,w) = 0 implies that f(O, o) vanishes in a

To handle the second term using Monte Carlo methods, neighborhood of 0, from which it follows that f'(O0o, wv) = 0.
s o that f'(Oo,,w)X(Oo,w) = 0. Thus, g( ) =

we need to represent it as thd expectation of a r.v. To ac-

complish this, suppose that g(w) is a non-negative function f(0o, w)p(dwJ) satisfies both (2.2) and (2.3). In this case,

such that

jg(w)M(dw) - 1. (2.2) H(Oo, )=f'(8o, W) ( lg f(9.,w)) (2.7)f (0o,-) = og (0 : 2'

Then, the measure P(dw) = g(w)p(dw) is a probability the right-hand side of (2.7) is known as the likelihood ratio
distribution on S1. If g has the additional property that derivative (because H(Oo, w) -" I is the deriva-

tive of the quantity know in the statistics literature as the

IX(Oo,W)f'(oo,W) > 0 implies likelihood ratio of P0 with respect to P.0 ).
t~hat g(w) > 0, (2.3)

This choice of g has an important advantage. Note that
if we sample outcomes w according to f(60,w)p( ), wetpo . the c.v.'s X(0o), X'(80 ), and X(Oo)H(Oo) to esti-

mate r(Oo) and both the terms appearing on the right-nand
side of (2.1) simultaneously. Thus, with this choice of g, we

X(0 0 , o, W) g(w)p(dw) = EX(6o)H() may estimate ct(OO) and &'(o) using the original sampling
o g(w) (distribution associated with parameter 00. At the same time,

(2.4) it should be noted that there ae important problem classes

where H(Oo,w) = f'(8o,w)/g(w) and E(.) denotes ex- (e.g. rare event simulations) in which mch better choices of

pecttion reluive to the probaility P. (Note that (2.3) is g can be made (better in the sense of smaller variance).

required to avoid dividing by sero in (2.4).) Given the repre-
sentation (2.4) of the seaem term as mn expectation, we can We do thi section by recall tha to derive (2.1).
now easily apply Mes Carlo nethods to estimate it (in the an interchange of the differentiation and expectation oper-

same way as for tim Amt term). ators was required. In virtually all practical examples, the
interchange is valid under mild additional regularity asump-

Wo now turn to the question of selecting the sampling tions on the problem. As a consequence, we shall ignore this

density g. The theory of importance samling asserts that interchange issue thrughout the remainder of this paper.

the choice of g which minimises the variance of the obeerva.
tions of X(Oo)H(Oo) is

t3. LIKELIHOOD RATIO DERIVATIVE
ESTIMATION IN DISCRETE TIME

IX(9 0,W)'(0,W)I (2.5) In this section, we specialize the discussion of Section 2

fn IX(Oo,w)f'(0o,w) lp(dw)' to the case where X(0,w) is a sample performance measure
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associated with a discrete-time sequence Y = (Y. : n > 0) so that
taking values in a discrete state space S. Specifically, we
suppose that Q = x S x ... and that Y) is the coordinate r-i

r. v. Y'(.) = for w = (Wo, W, .. ) E Q. We assume f , (00 P= p(00,UO) I k p(0, .k;Wk+ I

that X(6) takes the form k=0
rn-i

+ p(Oo,wo) ,(Oo, k; +)Ipj(Oo, :,;wj+).

X(0) = h(0, Yo, Yi, ... ) k=o ,(. (3.3)

for some real-valued function h. Since S is discrete, there We can simplify the above formula somewhat. We claim that

exist joint probability mass functions P0, PI .. such that if 14(GaWk+) $ 0. it must folow that

Pk(8o,ZWk,wk+1) > 0. Forsuppose th t pt(00,:k;.o +I)

- 0. Then it folows that

Pe{Y 0 = yo,.. _Y, = y,,) = p,(O,,,) (3.1)

pk(0o + h, :k;wk+) = p(Oo, :;w+l)h + o(h)

where Y o = (yo . Yn). Letting

as h 1 0, from which it is evident that pk (6o+ h, :k;awk+ i)

< 0 for sone h. But pk(0,Zk;W+ I ) is a mas function

and hence must be non-negative. This contradiction guaran-
p. (0, Y n- 1; y,) tees that p (0o, Z; k; W+ I ) > 0. A similar argument shows

P"Y y YO ,.Yn 1 zYn-i), thtpo(Go)>0whenever po(0,wo) $ 0. Hence, we
may write (3.3) as

we can write (3.1) as the product

f'(Oo,) r-i

n-1 f(Oo,',) pO(Wo, )o) Pk(O,:k;Wk+l)
Spo(0, Yo) fjp(o, Yt;(O +i) p) k=O Pk(00,Wk;Wk+ 1)

k=O

Suppose that we choose a g such that
Suppose now that X(O) is a function of Y up to some finite fn_ g(W)pm(dW) = 1 and f(Oo, w) > 0 implies that

(deterministic) time horizon TM, so that X(O) = h(O, Ym) g(w) > 0; then (2.3) is automaticaly in force. (In particu-

where Ym = (Yo,. . . , Ym). To apply the idea of Section 2, lar, settingg(w) = f(9O,w) works.) Hence, we find that

we need to obtain a representation P(dw)

f(9,w)pu(dw) for some measure p. But observe that for
WE 2m, &'(G0 ) = E*.X'( 0 ) + EX(Oo)H(Oo) (3.4)

when E#(.) denotes the expectiatn operator associated
n- ,with the probability Pg(dw) = g(w)Ipn(dw), E,() de-

P#(&J) p*(e;Wo)1 ph(6,k;wk+I)p,,(dw) notes expectation relative to Ps, and
k=O

.(o,.-,W) and pAmis counting measure on m= H(80)
X(m + 1 time). Hence, we may take - + -1At90, r,,,) [p(Go, Yo) -j(9o, Y ;Y+ 1

(Y.) &o ph(o, ; Y + I

rn-I
(oW) = p(OWo) 1J p(O, :k; w+ ), The same argument can be extended to a certain class

k=0 of random time horizons. In particular, suppose that T is
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a stopping time with respect to Y i.e. for each m >

0, I(T = m) = km(Y.) for some function km. We
assume that the performance measure X(O) is a function of H(6 0 ) =
the path of Y up to the random time horizon T i.e. there PO(Oo Yo) " pk(Oo,Yk,Yk+i)
exists a family of functions ho, h 1 ,... such that P+(oY0) E -Po (0, O) =o Ph (00, Yk; Yk+ 1)

X(0) = E h, (0, Ym,)I(T = m) N Ve now give & couple of examples to illustrate (3.7) and
m=0 (3.5) (3.8).

= hT (9, T) I(T < o). (3.9) EXAMPLE. Suppose that under distribution P, Y is

As in the derivation of (3.4), we need to represent PS A a Markov chain with initial distribution As(9) and transition

Pe(dw)= f(,w)(dw). Let 2 = U-= 0 {w.,o E Om: matrix P(O). Assume that X(O) = hT(YT)I(T < oc)

]m(m) -- 1} and note that forw = (W 0 ,W 1 , .. .. ,WT) E (with T a stopping time), so that ax(O) = E{hT(YT):
T < o}. Then, (3.8) yields

Pe(dw) = a'(0) = E8. {hT(YT)H(Oo);T < o}, (3.0)
T-1po(9.wo) fJ[ pk(o, wk;wk+1)PT(d) (3.6)
POO 0 W:where H(Oo) = jp'(oo, Yo)lp(Oo, Yo)+k = O ~T - 1 I V t o

k=o (eo,Ykyk+)/p(eo, yk,yk+l). Incerrnset-
where p' is counting measure on DT. Suppose that g is tings, the eatimator suggested by (3.10) may have & largevarirece (eig. rareteventesiula ion). ForSsuchseroblems
chosen as a non-negative function on OT having the property variance (e.g. rare event simulation). For such problems,
that f (dw) -- 1 _WP(OW' 0)

T
-1 suppose that we select g to stisfy the positivity conditions

tha Po(WPTdw =,0 L o stated earlier. Then
Pk(Oo, Zk; wk+1) > 0 implies that g(W) > 0 forw E OrT-.
By combining (3.5) and (3.6) and proceeding as in the deriv&.
tion of (3.4), we obtain the following stopping time general-
ization of (3.4): 2'(0o) = E#{hT(YT)H(0o);T < oo}, (3.11)

where H(9 0 ) = Oo, T O-Ya'(Oo) = E,.X'(Oo) + EgX(Oo)H(Oo) (3.7) T-I/9(Yr) " DA/(eo0, Y)/IP(eo, o) + 1: " (9o, Y' , Y + I )

where k=O
IrP(, Y , Yk+l)]. In a "ram- event" setting, one would
typic4Ily choose g so as to bis the systen to force the oc-
currence of more rar events.

H(O) = OO, YO)IP(O ; Yk+l) (3.12) EXAMPLE. In this example, we assume that underEgT- PO, Y is a Marov chain with non-stationary transition

WOOI Y +) PI(OYh;'Yk+i) probbiaitie, so that P,{Y+l = yt+..Y1  = y)

Ipo(GOYO) =o o,(eoY;Y6+)] Ph(, Yk,,+1). Then, ifa(e) = E{hT(Y' );T<oo}.
(3.8) yields

As in the case of (3.4), one possible choice of g is f(o0), in
which event (3.7) simplifies to:

(eo) = E,0 {hT(YT)H(8o);T < oo}

,'(Oo) = Es[X'(o) + X(Oo)H(Oo) (3.8) when H(eo) = p'(0o, Yo)/Ip(Oo, o)+

ET -P[,(o,Yk,Y+ 1)/P(eo,Y&,Y&+l) ; the obvious
where anaiog of (3.11) can also be written down.
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4. LIKELIHOOD RATIO DERIVATIVE
ESTIMATION IN CONTINUOUS TIME X() = E hk(, )I(T- k)

k--0

This section is devoted to generalizing the ideas of Sec-

tion 3 to continuous-time discrete-event dynamical systems. = hT(Zr)I(T < oc).
We view X(O,w) as & sample performance measure asso-

ciated with a continuous-time process (Y = Y(t) : t > 0) Let OT = UoMo E Q. and
taking values in a discrete state space S. The process Y is as- note that for ZT = (Z.. ZT) E OT, we roy extend
surned to be piece-wise constant with jump times note to

S 1 ,S 2 .... (Sn -" o as n - 00). Hence, ifSo = 0 and

= Y(Sn), we may write

ccP{ZT E dzT} =
Y(t) = Y.I(S. < t < S.+I). T-i

n=0 pO(O, Zo) 11 pk(0,7Z; Zk+))PT(d:I)
k =0

Let A, = S.+ - S, and put Z, = (Y, An)" We

suppose that 0 = S X S X ... wher . = S X [0, C-)

and that Zn is the co-ordinate r.v. Zn(w) = wn for W = T-P

E where jT(dZT) = (dz0) 11 pk(tk,dzk+l). By Ar-

k=0
guing identically as in Section 3, we obtain the following

Sction ode t l prceeuinr lle wt h the d evebuiop of Q continuous-time generalization of (3.7). Suppose g is chosen
Section 3, we shall require that the distributions P. on

as a non-negative function on nT having the property that
have the property that there exist measures p0,ol.-, such fnT g(ZT)pT(dzT) = I and Po(oo,zo) HT-1
that

pk(O0, 7k, Zk+1) > 0 implies that g(7T) > 0 for ZT E
PofZ0 E d) = po (0, zo)po (dzo) QT. Then, if E,(.) is the expectation operator associated

with P(d7T) = g(ZT)p(dZT), we obtain the derivative

Pe{Zn+1 E dz.+il-. = 7} representation

= p.(0, 7., zn+1)P.(7n, dZn+1)

where Z5 = (Z0....,Z,) and Z = (z0.....z) E d'(60 ) = E.ox'(Oo) + ESX(o)H(Oo)

S x ... x S = Q,, ((n + 1) times). Then, analogously to
(3.2), we may write for a(O) = E{h(O,ZT);T < oo1, where

P{Z,1  E dn} =T-1
n-1 (4.1) H(eo) = Po(Oo, Zo) JIptk(o, Zt;Zk+1)/g(Zr)

po(o, zo) 17 ph(o, T; z+,) .(dn) k=o
k=O rT-1 - 1IP;(o Zo)+ p't(go, Zt; Zk+ 1)ni [p(Oo, o) +  - "oZ~ZhOIP000 ZO) =o Pk(Oo, ik; Zk+l)l

where p,(d7n) = po(dzo) pi,(_;k,dzk+1). (4.2)

h-i As in Section 3, one poasible choice for g is g(ZT)

Suppose now that we consider a performance measure - p0(o, zo) 11T-1 pk(9, z7k; Z&+), in which case P is

X(9) that is a function of the path up to horison T; this identical to P#,, yieklin
obviously indudes any performance measure that depends on

Y up to time ST+i. As in Section 3, we require that T be

a stopping time with respect to Z = (Z, : n > 0) i.e. for a'(eo) = E, 0 (X'(0o) + X(9o)H(#o)] (4.3)

each m > 0, I(T = m) = km(Zm) for some function
km. Then, the performance measure X(O) may be written

in the form where
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,Z,;Zk+I) ,'(0o) = Eo[h(Y(s) .0 < s < t)H(9o)]H(Oo) PO(0o, Zo) + 1:.. g, Z :"L

Po00, Zo) k=O pk(00, Zk; Zk+)
where

We shall now illustrate these formlae with some examples.

(4.4) EXAMPLE. Suppose that under Pe, Y is a continuous- T -1

time Markov chain with initial distribution JA() and gener- H(Oo) = + o) R( o,Yk,Yk+l)

ator Q(O). Assume that X(9) = h(Y(S) : 0_ ). , o) = O

Then, X(O) can be represented as f'(00, yk, Ak)

X(O) = h(Z 0, Z . .. ZT) where T is the stopping time + E f(go, Yk, A0

T = inf{;. > 0 En=, > t}. Set Z" = (Y",t") k=0

(recall that Zn E S = S X [0, co)). Then,
(4.6) EXAMPLE. In this example, we show that (4.3) easily

handles the case where the process is non-time homogeneous.

Pe{Zo E dzo} = po(9, zo)po(dzo) In particular,. suppose that under Pe, Y is a non-time ho-

mogeneous continuous-time Markov chain with initial distri-

where po(O. Yo, to) = (O, yo)q(O, Yo) exp(-q(O, yo)to), bution p(9) and time-dependent generator Q(9, t). Then.
q(9,y) = -Q(O,y,y), and po(dzo) is the product of

counting measure and Lebesgue measure. Furthermore,

P{Z+l E dzn+IZn -= 70 Pe y{ +i = Y,A.+i E diZ,}
O(O, s.+ , Y, ) W ,S +t')Pk,(,,7.; zn+0)P.(7n, dzn+0) q(O, S.+,, Yn) (, + +t)

where pn(,7;zn+) = Q(O,y,,Yl)q(O,Yn.+) exp(- q(9, Sn+I + u, y)du)dt

exp(-q(oy, +)t..+)/q(o,yn) and p ,(z,dz.+) is
again the product of counting measure and Lebesque mea- where q(O, t, y) = -Q(O, t, y, y). Suppose that X(0)

sure. Formula (4.3) now becomes h(Y(s) : 0 < 8 < t). If we put T = inf{n > 0

n=o A > t}, then (4.3) takes the form

a'(oo) = E.o[h(Y(s) 0 < a < t)H(Oo)]
a'(eo) = Eo[h(Y(s) : 0 < 8 < t)H(eo)]

where

where

H(O)= A'0. Y) qeoykT-1)T-

A(o90,Yo) Q(00,Y1 Y1, 1) o + E Q'(9oSh++1 YkYk+1 )
~~~= H(Oo) = (o o -

q, (Go,,YT) T ) P(Oo,Yo) .-o Q(00, S 1 ,Y,Y+ 1)+ Oo -T q,(Oo, YO Ak. T_: jS11+1
q(o0, YT) q q'(0o, Sr+,, YT) _ t, Y)dt.

+ q(0o, Sr+l, Y) k=o S.

(4.5) EXAMPLE. Suppose that under P#,Y is a semi-

Markov process with initial distribution p(O), jump matrix (4.7) EXAMPLE. We now suppose that Y is a generalized

R(O), and holding time distributions (F(O, z, dt) : z E ) semi-Markov proces (GSMP) under Pp: see GLYNN (1983)

Suppose that for each z, F(O, z, dr) = f(0, z, t)p(z, dt) for further details on GSMP's. Let E be the event set of the

for some measure p. Assuming that X(O) = h(Y(s) :0< GSMP. The initial state of the GSMP is chosen according
< t), we again put T = inf{n > 0 : "=0 Ak > t}. to the distribution p(O), whereas the initial clock readings

Formula (4.3) becomes ae chosen from the distributions F(O,e,dt), for e E E.
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When dlock e initiates 8 transition from state y, the next

state is chosen from the mass function p(8, .;y, e). Tyr-

ically, when the GSMP enters a new state, certain cdocks 1100)
need to be stochastically reset. We assume that the distri- ' Y) T-1

bution used to reset clock el in state Y/ when a transition - P,___ (0,Y)+Z P'(00, Yk+I; Yk,e(Ck))

just occurred from state yj with clockt e as triggering event 'U(00' YO) ± LO POO0 Y+ 1; Yk, e*(Ct)
is given by F(8, el, Y', e, y, di). We require that there exist + :f,(00,e, Co. T
measures u(e, d), p(e', y',e, y,dt) such that + FOe

e 0, OO; k=1

Z fOoe,yk, e(Ck.1), Yt.4 ,Ck.)
'f(9,e,yk, eJCk-1 ), yk -,Cke)

F(6, e', y', e, yf, de)

= 1(0, e', y', e, y, t), pA(e', y', e, y, dt) .) The above examples serve to illustrate the great variety

of stochastic processes to which likelihood ratio derivative

F(O, e, di) = f1(0, e, i)p(e, di). estimation may be applied.
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